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Abstract. Based on the analysis of group-chain scheme wavefunctions and the use of the
constraint condition set down by the ratios of crystal-field parameters calculated by the point-
charge model, the crystal-field-level fitting and the study of Zeeman interaction characterized by
theg-factor in Er3+ : LiYF 4 have been carried out, in which the Er3+ ions occupy positions with
point symmetry S4. The RMS of energy-level fitting is less than 8 cm−1, and the corresponding
wavefunctions of Stark sublevels are useful in the calculation of theg-factors of the ground and
excited states. The calculated results agree well with the experiment and confirm Karayianis’
partial g-sum rule. The method proposed turned out to be effective in the study of not only the
spectroscopic and laser properties but also the magnetic properties of rare-earth ions in crystals.

1. Introduction

The scheelite crystal lithium yttrium fluoride (LiYF4) is one of the most versatile materials
investigated thus far. As for triply ionized rare-earth ions in LiYF4, Kaminskii [1] list 36
lasers at different wavelengths. Interest in Er3+ : LiYF 4 stems from several factors including
efficient quantum counter action, long-lived strong fluorescent levels and a wide range of
laser emission at infrared wavelengths (0.85–2.8µm) [2–5]. Very recently, the room-
temperature-pumped continuous green wave laser emission demonstrated in Er3+ : LiYF 4

is even more fascinating [6, 7]. It is important to study the detailed structure of energy
levels in order to improve the device efficiency in the above mentioned application. We
would like to use the method of a group-chain scheme + constraint condition by the ratios
of crystal-field (CF) parameters, which was proposed by one of the present authors before,
to investigate fully the energy levels of Er3+ : LiYF 4. However, this time we study its
magnetic properties rather than its spectroscopic characteristics to show that the method
introduced is widely applicable.

Conventional CF theory has been extensively used in energy-level and spectroscopy
analysis of rare-earth crystals. Karayianis [8] has analysed the energy levels and magnetic
splitting of Er3+. His theoretical calculations yielded excited-stateg-factors for all levels
of the 4I term. Additionally, Karayianis [9] and Kulpa and Karayianis [10] discussed a
partialg-sum rule which could allow the use ofg-factors for spectral interpretation without
the need for elaborate calculations. It was Butler [11] who first introduced the group-chain
scheme to investigate how the effect of the environment of the ions may be written in terms
of tensor operators which have point-group symmetry. Since the coupling coefficients and
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the tables in Butler’s book offer fundamental simplification, it is more convenient to fit the
energy levels of the localized centres in crystals, which generalize the calculation of matrix
elements.

In previous work, the CF of low-symmetry active ions in laser crystals, such as Nd3+

in YVO4 [12], NdAl3(BO3)4, and YAl3(BO3)4 [13], was analysed in detail based on the
group-chain scheme. In Nd3+ : YVO4, Nd3+ ions substitute on the D2d sites of Y3+ ions.
Naturally, a group–subgroup chain is selected as O3 ⊃ Oh ⊃ Td ⊃ D2d . In Er3+ : LiYF 4,
Er3+ ions occupy positions of S4 site symmetry. Noting that the S4 point group is the
subgroup of D2d , we choose the extended group chain O3 ⊃ Oh ⊃ Td ⊃ D2d ⊃ S4. In
actual calculation of the energy levels of Er3+ : LiYF 4, we may utilize the results for
Nd3+ : YVO4.

2. Group-chain scheme analysis

Consider the group chain O3 ⊃ Oh ⊃ Td ⊃ D2d ⊃ S4; the detailed CF Hamiltonian can be
expressed in Butler’s notation as

Hcf = C2+
2+20b

2+
2+20 + C4+

0+00b
4+
0+00 + iC4+

1+10̃
b4+

1+10̃
+ C4+

2+20b
4+
2+20 + C6+

0+00b
6+
0+00

+iC6+

1+10̃
b6+

1+10̃
+ C6+

2+20b
6+
2+20. (1)

Here bk
µνξ are the basis functions of the group chain O3 ⊃ Oh ⊃ Td ⊃ D2d ⊃ S4 and

are identical with|kµνξ0〉 in [11]; Ck
µνξ are the expansion coefficients ofHcf by these

bases. Because all the basis functions belong to the 0 representation of S4 in the calculation
concerned, the index 0 for the S4 group has been omitted in equation (1).

Based on the conventional CF analysis [14],Hof can also be expressed as [15]

Hcf = B20C20 + B40C40 + RB44(C44 + C4−4) + iIB44(C44 − C4−4) + B60C60

+RB64(C64 + C6−4) + iIB64(C64 − C6−4) (2)

whereRBkq andIBkq represent the real and imaginary components, respectively, of the CF
parameterBkq . It can be easily shown that the relationship between the CF parameters of
the two different schemes will be
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3)1/2C2+
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2+20 = −( 3

2)1/2B20

B40 = 2( 2
35)
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6
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6)1/2C4+
2+20] C4+
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35)
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and

B60 = 4( 1
231)

1/2[− 1
2( 1
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2( 7
2)1/2C6+
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0+00 = 2311/2

4
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2
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)
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1/2

(
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4
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1/2( 1
2)1/2C6+

1+10̃
C6+

2+20 = 2311/2

4

(
141/2

4
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(4)

In Er3+ : LiYF 4, the Er3+ ion contains 11 4f-shell electrons and is an odd-electron system.
So its CF Hamiltonian is a time-reversal invariant, which leads to Kramers degeneracy of
the energy levels.

As shown later, all the Stark levels are doubly degenerate and their wavefunctions have
the following conjugate relationship:

9 =
∑

aa1a2a3a4

Ca
a1a2a3a4

|aa1a2a3a4〉

9 =
∑

aa1a2a3a4

(Ca
a1a2a3a4

)∗|aa1a2a3a4〉
(5)

and so only one set of basis functions9 need to be taken into consideration during the
calculation of the Hermitian matrix elements.

The matrix elements of the CF Hamiltonian in the group-chain scheme can be calculated
by means of the Wigner–Eckart theorem and the factorization lemma of the 3jm factors
[11]:

〈aa1a2a3a4|Hcf |bb1b2b3b4〉 =
∑
kµνξ

Ck
µνξ

[
a

a1

] [
a1

a2

] [
a2

a3

] [
a3

a4

]
×

∑
rr1r2r3r4

[
a∗ k b

a∗
1 µ b1

]
r

r1

[
a∗

1 µ b1

a∗
2 ν b2

]
r1

r2

[
a∗

2 ν b2

a∗
3 ξ b3

]
r2

r3

×
[

a∗
3 ξ b3

a∗
4 0 b4

]
r3

r4
〈a‖bk‖b〉 (6)

〈a‖bk‖b〉 = 〈f nSLa‖U(k)‖f nSL′b〉〈4f ‖C(k)‖4f 〉. (7)

As usually adopted in this field, the reduced matrix elements (RME)〈f nSLa‖U(k)‖f nSL′b〉
are calculated under the intermediate-coupling approximation [16–18] and are listed in
appendix 1. All the 2jm and 3jm factors can be found from [11].

3. Energy levels fitting and wavefunctions

Because the separation of the concerned low-lying spectroscopic terms of the Er3+ ion are
sufficiently large, the effect ofJ mixing is small in the Er3+ : LiYF 4 crystal. J remains
as a fairly ‘good’ quantum number [16]. ThereforeJ mixing was ignored in the following
calculation.

The method introduced here differs from Karayianis’ [8] method. The energy-level
fitting is performed by two steps instead of by diagonalizing a combined spin–orbit and
CF Hamiltonian. First, free-ion wavefunctions in a Russell–Saunders basis ofJ states are
obtained by diagonalizing a Hamiltonian containing the Coulomb and spin–orbit interactions,
and thus we can compute the RME ofU(k) (k = 2, 4, 6) between all the intermediate-coupled
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wavefunctions representing the multiplets of the electronic ground configuration of the free
ion. Second, matrices (such as 8× 8 of 4I15/2, 7 × 7 of 4I13/2, etc) representing the CF
interaction are diagonalized simultaneously for several2S+1LJ states for which data on the
experimental energy levels exist, and the CF parameters are determined in a least-squares
fit to the data. Here we assume that the centres of gravity ofJ multiplets are invariant even
in the CF interaction, because the effect ofJ mixing is negligible.

On the basis of the group–subgroup chain O3 ⊃ Oh ⊃ Td ⊃ D2d ⊃ S4, some of the
wavefunctions of the 4f11 configuration in Er3+ at the S4 symmetry position are expressed
as linear combinations of the basis|f nSLJµνξη〉 in the group-chain scheme, whereµ,
ν, ξ and η are the irreducible representations of Oh, Td , D2d and S4, respectively. From
equation (6), the detailed matrix elements of the4S3/2, 4F9/2, 4I9/2, 4I11/2, 4I13/2 and4I15/2

spectroscopic terms can be obtained. Taking into account the structure distortion when the
Er3+ ions occupy some of the Y3+ sites [19], the CF parameters are calculated by the simple
point-charge model:

Anm =
∑

j

e2

Rn+1
j

4π

2n + 1
(−1)mY−m

n (θj , ϕj ). (8)

Consider the shielding factors of 5s25p6 shells and the scaling parameters of the bare
Hartree–Fock wavefunction [20]:

Bnm = ρnAnm. (9)

With Er3+, ρ2 = 0.1706, ρ4 = 0.4126 andρ6 = 0.9826. During the lattice sum ofAnm,
B44 can be made real by a rotation about theZ axis, i.e.IB44 = 0. Thus the fitting number
of CF parameters is reduced to six. Using equation (4), the initial values andr0, r1, r2,
the ratios of the same rank of group-chain parameters can be obtained, which are listed in
tables 1 and 2. Note that

r0 = C4+
2+20

C4+
0+00

r1 =
C6+

1+10̃

C6+
0+00

r2 = C6+
2+20

C6+
0+00

.

The absolute values of these ratios can be seen as a measure of the degree of symmetry
distortion of the system [13].

Table 1. CF parametersBkq for Er3+ : LiYF 4.

B20 B40 B44 B60 RB64 IB64 Reference

361.59 −621.29 1141.97−100.65 326.56 66.51 Point Charged model
314 −625 982 −32.4 584 171 [21]
364.13 −281.41 493.35 −45.51 155.70 31.67 Fitting results

Table 2. Group-chain parameters and constraint ratios

C2+
2+20 C4+

0+00 C4+
2+20 C6+

0+00 C6+
1+10̃

C6+
2+20 r0 r1 r2 Reference

−442.86 1185.52−3419.0 1758.97 357.39 262.67−2.8839 0.2032 0.1493 Point Charged model
−445.97 492.44−1494.5 843.79 170.17 134.05−3.0349 0.2017 0.1589 Fitting results

By using the ratios listed in table 2 as constraints in the least-squares fitting, only one
minimum was obtained. Further work in the fitting is to adjust the ratios to minimize the
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Table 3. Comparison of the observed and calculated energy levels andg-factors of Er3+ in
LiYF 4 at 77 K.

Energy (cm−1) g‖
J

multiplet 0 Experimentala Theoreticalb Experimentalc Theoreticalb Theoreticald

4S3/2 7,8 18 497 18 495.24 2.00 2.00
5,6 18 438 18 439.76 −5.26± 0.04 −6.00 −6.00

4F9/2 5,6 15 477 15 480.35 1.73
7,8 15 425 15 426.87 −4.07
7,8 15 349 15 343.63 −3.62
5,6 15 333 15 332.97 0.94
7,8 15 314 15 314.19 9.84± 0.25 11.69

4I9/2 7,8 12 667 12 671.66 1.21
7,8 12 572 12 559.07 −2.28
5,6 12 546 12 541.13 1.63
5,6 12 483f 12 496.49 −0.17
7,8 12 369 12 369.00 3.25

4I11/2 7,8 10 355 10 355.26 5.88
5,6 10 320 10 323.44 −8.43
7,8 10 303 10 305.62 −3.89
5,6 10 285 10 284.58 2.12
5,6 10 239 10 240.85 −2.37
7,8 10 222 10 234.23 1.44± 0.07 0.89 1.23

4I13/2 5,6 6738 6746.98 −8.99 −9.35
7,8 6724 6725.73 5.86± 0.10 5.93 7.13
5,6 6696 6700.51 9.69 9.48
7,8 6672 6656.05 −4.07± 0.11 −3.80 −5.37
5,6 6580 6587.11 4.03 5.57
7,8g 6540 6535.46 1.37± 0.18 1.20 1.54
5,6g 6536 6534.15 −1.13± 0.47 −0.30 −1.24

4I15/2 5,6 354 361.74 12.00 10.58
5,6 326 327.38 −9.65 −8.77
7,8 289 282.07 −9.62 −12.03
7,8 250 240.85 4.12 7.89
7,8 55 62.00 −2.38± 0.13 −0.73 −0.81
5,6 26 30.83 0.11± 0.13 −0.45 −0.37
7,8 16 7.72 −7.97± 0.20 −8.17 −11.06
5,6 0 3.41 3.137± 0.003e 2.91 3.35

RMS 7.95 1.09 2.01

a Spectrum observed by Petrov and Tkachuk [22].
b Present results.
c Kulpa’s [23] electron paramagnetic resonance EPR data.
d Karayianis’ [8] parametrized fit.
e EPR data of Sattler and Nemarich [24].
f Estimated value according to our fitting.
g Fitting results of this paper. In Kulpa’s paper, the ground state of4I13/2 is 07,8.

RMS deviation of the energy levels. In table 2, comparisons of the initial and final even-
k parametersCk

µνξ (cm−1) and the corresponding ratios are given. The experimental and
fitting energy levels are compared in table 3. The group irreducible representations of Stark
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sublevels are also shown.

RMS =
28∑
i=1

(E
exp

i − Etheo
i )2

28− 6
. (10)

The RMS of fitting results is less than 8 cm−1, which shows that calculated eigenvalues
agree well with the experimental energy levels [22].

The eigenfunctions of the Stark sublevels of the4S3/2, 4F9/2, 4I9/2, 4I11/2, 4I13/2 and
4I15/2 manifolds are normalized and listed in the order of decreasing energy in appendix 2.
In the case of the S4 point group, Butler’s notations12 and 3

2 correspond to05 and 08

respectively, of Bethe’s notation.
Owing to Kramers degeneracy, another set of conjugate eigenfunction of Stark

sublevels, which belongs to06 and 07 (or − 1
2 and − 3

2) of the S4 point-group irreducible
representations, is omitted in appendix 2. By using the eigenfunctions above, theg-factors
of EPR can be further calculated.

4. The Zeeeman interaction

Because of the existence of time-reversal symmetry in Er3+:LiYF 4, all the Stark sublevels
are doubly degenerate even if all these levels completely split by the CF interaction of S4

point symmetry. Degenerate CF levels will be split in a magnetic field, and the magnitude
of the splitting, which can be characterized by ag-tensor, depends on the external magnetic
field and eigenfunctions of CF concerned.

Karayianis [8] had reported a theoretical calculation ofg-factors of the Stark sublevels
of the 4I term by the conventional CF method, which did not agree well with Kulpa’s [23]
experimental values. In this paper, theg-factors of the ground and excited states of the
4S3/2, 4F9/2, 4I9/2, 4I11/2, 4I13/2 and4I15/2 terms are calculated on the basis of group-chain
scheme analysis.

According to equation (4.2.9) of Butler [11], the Zeeman Hamiltonian can be expressed
as follows by the basis of the group chain O3 ⊃ Oh ⊃ Td ⊃ D2d ⊃ S4:

HZ =
∑

α1J1α2J2

(C0U
1+1+10̃0 + C1U

1+1+111 + C−1U
1+1+11−1)〈α1J1‖HZ‖α2J2〉 (11)

whereU1+1+1ξβ (ξβ = 0̃0, 11, 1−1) is an O3 unit tensor of the above group-chain scheme,
andCi(i = 0, ±1) depends on the relationship between the laboratory (Zeeman)z axis and
the crystalx, y, z axes.

Generally, the Zeeman interaction is much less than the CF interaction so that we can
deal with the external magnetic field as a perturbation and use the wavefunctions of the CF
energy levels as zeroth-order approximate wavefunctions to analyse the magnetic splitting.
There are two different situations which should be discussed separately.

4.1. Magnetic fieldH along the crystalZ axis

In this situation, the Zeeman Hamiltonian can be written as

HZ =
∑

α1J1α2J2

U1+1+10̃0(α1J1, α2J2)〈α1J1‖HZ‖α2J2〉. (12)

Using bases of the group chain O3 ⊃ Oh ⊃ Td ⊃ D2d ⊃ S4, the matrix elements of Zeeman
effect can be expanded as

〈αSLJa1a2a3a4|HZ|αSLJb1b2b3b4〉
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=
∑

α1J1α2J2

〈αSLJa1a2a3a4|U1+1+10̃0(α1J1, α2J2)|αSLJb1b2b3b4〉

×〈α1J1‖HZ‖α2J2〉. (13)

The matrix elements of the unit tensorU1+1+10̃0(α1J1, α2J2) are zero unless all operator
parentage labels match the state parentage labels. Using this, the summation vanishes and
equation (13) is given by

〈αSLJa1a2a3a4|U1+1+10̃0(αSLJ, αSLJ)|αSLJb1b2b3b4〉〈αSLJ‖HZ‖αSLJ 〉. (14)

By using the Wigner–Eckart theorem it can be factorized as

〈αSLJ |U1+
(αSLJ, αSLJ)|αSLJ 〉〈αSLJ‖HZ‖αSLJ 〉


J

a1

a2

a3

a4




J ∗ 1+ J

a∗
1 1+ b1

a∗
2 1 b2

a∗
3 0̃ b3

a∗
4 0 b4


O3

Oh

Td

D2d

S4

. (15)

Now the RME of the unit tensor operator is unity and thus vanishes. By further factorizing
the 2jm and 3jm factors, we obtain∑
rr1r2r3r4

〈αSLJ‖HZ‖αSLJ 〉
[

J

a1

] [
J ∗ 1+ J

a∗
1 1+ b1

]
r

r1

[
a1

a2

] [
a∗

1 1+ b1

a∗
2 1 b2

]
r1

r2

[
a2

a3

]
×

[
a∗

2 1 b2

a∗
3 0̃ b3

]
r2

r3

[
a3

a4

] [
a∗

3 0̃ b3

a∗
4 0 b4

]
r3

r4
(16)

where

〈αSLJ‖HZ‖αSLJ 〉 = βHgSLJ

√
J (J + 1)(2J + 1)

gSLJ = 1 + (gS − 1)
J (J + 1) − L(L + 1) + S(S + 1)

2J (J + 1)

gS ≈ 2.002 32.

(17)

Observe that the Zeeman interaction is an S4 scalar; so aδa4b4 arises in the above formula.
If we usejm tables and consider the eigenfunction of each Stark sublevel which belongs
to the08(3/2) or 05(1/2) irreducible representation of the S4 then we have

〈αSLJa1a2a3a4|HZ|αSLJb1b2b3b4〉 = 1√
2
βHgSLJ [J (J + 1)(2J + 1)]1/2

×
∑

rr1r2r3

[
J 1+ J

a1 1+ b1

]
r

r1

[
a1 1+ b1

a2 1 b2

]
r1

r2

[
a2 1 b2

a3 0̃ b3

]
r2

r3
. (18)

The corresponding matrix element of another degenerate eigenfunction which belongs to
the07(− 3

2) or 06(− 1
2) irreducible representation of the S4 group can be obtained similarly:

〈αSLJa1a2a3 − a4|HZ|αSLJb1b2b3 − b4〉 = −1√
2
βHgSLJ [J (J + 1)(2J + 1)]1/2

×
∑

rr1r2r3

[
J 1+ J

a1 1+ b1

]
r

r1

[
a1 1+ b1

a2 1 b2

]
r1

r2

[
a2 1 b2

a3 0̃ b3

]
r2

r3
. (19)

So theg‖-values, which characterize the splitting energy of the doublet for a given magnetic
field, can be written as

g‖(05,6) = 1E(05,6)

βH
= 2〈αSLJa1a2a3a4|HZ|αSLJb1b2b3b4〉

βH

g‖(07,8) = 1E(07,8)

βH
= −2〈αSLJa1a2a3a4|HZ|αSLJb1b2b3b4〉

βH
.

(20)
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Here a convention is established by which positive or negativeg‖ are defined [9]. The
expression forg‖-values of all the Stark sublevels of the4S3/2, 4F9/2, 4I9/2, 4I11/2, 4I13/2

and 4I15/2 terms are listed in appendix 3. Theg‖-values are listed in table 3.
Comparing the results obtained with the experimental values of Kulpa [23] and the

theoretical values of Karayianis [8], the RMS of the present paper (1.09) is obviously less
than that of Karayianis (2.01). Theg‖-value of the ground state4I15/2 (2.91) is also in good
agreement with experiment (3.137).

In order to confirm the reliability of the analysis, we may sum all theg-factors over
levels belonging to a particular irreducible representation (e.g.05,6) of a particular2S+1LJ

state to check the partialg-sums rule [9]. In essence this rule refers to an approximate
invariance of the trace of the Zeeman interaction when the summation is taken over states
of the same group characterization within a given JLS multiplet. The results of the sums
are compared in table 4. The good agreement shows that group-chain scheme analysis, by
using one set of the CF parameter ratios as the constraint condition, is not only useful in the
study of spectroscopic properties of laser crystals [12,13] but also valid in the theoretical
calculation of magnetic properties.

Table 4. Comparison of partialg sums with theoretical values for the4I term of Er3+ in LiYF 4,
whereµ is the crystal quantum number.

07(− 3
2) 05(

1
2)

J µ = 1
2

a
Erb µ = 3

2
a Er b

4I9/2 2.18 2.18 1.45 1.45
4I11/2 2.90 2.88 −8.69 −8.68
4I13/2 3.32 3.32 4.43 4.43
4I15/2 −14.40 −14.41 4.80 4.81

G4µ(6, 3/2) −6.00 −6.03 2.00 2.01

a From table VI of [9].
b Our present fitting results.

4.2. Magnetic fieldH perpendicular to the crystalZ axis

Suppose that the external field is along the direction of theX axis; then the Zeeman
Hamiltonian will be

HZ =
∑

α1J1α2J2

1√
2

[U1+1+111(α1J1, α2J2) − U1+1+11−1(α1J1, α2J2)]〈α1J1‖HZ‖α2J2〉. (21)

For example, consider theg⊥-factor of the 4I15/2 ground state, i.e.4I15/2(05,6). The
derivation of the Zeeman matrix elements is similar to section 4.1. Also we have

〈αSLJa1a2a3a4|HZ|αSLJb1b2b3b4〉
= 1√

2

∑
rr1r2r3r4

〈αSLJ‖HZ‖αSLJ 〉
[

a3

a4

]
D2d

S4

[
J 1+ J

a1 1+ b1

]
r

r1

×
[

a1 1+ b1

a2 1 b2

]
r1

r2

[
a2 1 b2

a3 1 b3

]
r2

r3

×
([

a3 1 b3

a∗
4 1 b4

]
r3

r4
−

[
a3 1 b3

a∗
4 −1 b4

]
r3

r4

)
. (22)
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Dissimilar to section 4.1, the diagonal matrix elements are all zero (table 5)

H12 = 1
2βHg( 2S+1LJ )[J (J + 1)(2J + 1)]1/2

×
∑

rr1r2r3

[
J 1+ J

a1 1+ b1

]
r

r1

[
a1 1+ b1

a2 1 b2

]
r1

r2

[
a2 1 b2
1
2 1 1

2

]
r2

r3

= βHg( 4I15/2)F (C1, C2, C3, C4) (23)

where F(C1, C2, C3, C4) is a function of Ci (i = 1, 2, 3, 4), the linear coefficients of
corresponding group-chain wavefunctions, and can be calculated using appendix 2.g⊥ can
be obtained by diagonalizing the above 2× 2 matrix. Finally we obtaing⊥ = 8.28, which
agrees well with the experimental value (8.105) [24]. The value ofg⊥ is much larger than
that of g‖ (3.137). It shows large anisotropy of the ground-stateg tensor.

Table 5. The Zeeman matrix elements of the4I15/2(05,6) ground term.

HZ 05 06

05 0 H12

06 H12 0

5. Conclusion

Group-chain scheme analysis has been carried out for the Er3+ ion LiYF4 in S4 low-
symmetry sites and the CF energy-level fitting has been performed by using the constraint
condition introduced by the ratios of the CF parameters calculated by the simple point-charge
model. With the aid of the least-squares fitting programs, the group-chain parameters with
real physical meaning and the wavefunctions of Stark sublevels belonging to the manifolds
4S3/2, 4F9/2, 4I9/2, 4I11/2, 4I13/2 and 4I15/2 have been obtained.

The existence of an external magnetic field lifts the Kramers’ degeneracy of
spectroscopic terms of Er3+ : LiYF 4, and Zeeman splitting occurs in CF energy levels.
The theoretical formula for theg-factor has been completely deduced from the analysis
introduced. On the basis of the wavefunctions obtained, theg-factors of ground and excited
states of the terms concerned are calculated, which agrees well with the experiment and
confirms the partialg-sums rule of Karayianis. As shown in table 3, the RMS value for
g-factors calculated in this paper is half that published in [8]. This fully demonstrates that
the constraint condition used certainly represents the physical reality, which not only can be
used in the study of the optical properties but also can be applied to investigate the magnetic
properties of crystals doped with rare-earth ions. It also can be seen that the observable
macromagnetic properties are connected with the group-chain parameters determined by the
microstructures of the crystal.

One of the great advantages of group-chain scheme analysis is that the system’s
symmetry properties of the irreducible subspaces and eigenstates can be obtained by utilizing
simple group theory. The same method can be introduced into the study of other physical
properties of localized centres in the crystals.

Appendix 1

The reduced matrix elements of U(k) for Er3+ are given in table A1.1.
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Table A1.1. Reduced matrix elements of U(k) for Er3+.

〈f nSLJ‖U(k)‖f nSL′J ′〉
αSLJ–αSL′J ′ k = 2 k = 4 k = 6

4S3/2– 4S3/2 0.2036 0 0
4S3/2– 4I9/2 0 0.2700 0.5060
4S3/2– 4I11/2 0 0.0608 0.2809
4S3/2– 4I13/2 0 0 0.5900
4S3/2– 4I15/2 0 0 0.4780
4F9/2– 4F9/2 0.3132 0.2883 0.2017
4I9/2– 4I9/2 0.0015 0.2674−0.8637
4I11/2– 4I11/2 −0.2697 0.1703−0.1553
4I13/2– 4I13/2 −0.4161 0.4161−0.4783
4I15/2– 4I15/2 −0.4996 0.6180−1.3582

Appendix 2

The wavefunctions for the CF energy levels (O3 ⊃ Oh ⊃ Td ⊃ D2d ⊃ S4) are as follows:
4S3/2(b) | 3−

2
3
2

3
2

3
2〉 (08)

(a) | 3−
2

3
2

1
2

1
2〉 (05)

4F9/2(e) (0.1677− 0.0226i)| 3−
20

3
2

1
2

1
2〉 + 0.9856| 3−

21

3
2

1
2

1
2〉 (05)

(d) (0.6907+ 0.0644i)| 1−
2

1̃
2

3
2

3
2〉 + (0.6692+ 0.0209i)| 3−

20

3
2

3
2

3
2〉

+ 0.2656| 3−
21

3
2

3
2

3
2〉 (08)

(c) (0.4250+ 0.1503i)| 1−
2

1̃
2

3
2

3
2〉 + (−0.6746− 0.1353i)| 3−

20

3
2

3
2

3
2〉

+ 0.5687| 3−
21

3
2

3
2

3
2〉 (08)

(b) (0.9768− 0.1315i)| 3−
20

3
2

1
2

1
2〉 − 0.1692| 3−

21

3
2

1
2

1
2〉 (05)

(a) (−0.5461− 0.1318i)| 1−
2

1̃
2
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2
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3
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2
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2
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Appendix 3

The group-chain scheme calculation ofg‖-values of Stark sublevels of Er3+ : LiYF 4 is as
follows.
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( √
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where Ci (i = 1, 2, 3, 4) is the linear coefficient of the corresponding group-chain
wavefunction, andCij (i, j = 1, 2, 3, 4) = C∗

i Cj + C∗
j Ci .
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